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Abstract

The sound created by a whip as it cracks is produced by a mini-sonic boom created by a supersonic motion of the end of the
whip. To create such a motion, one sends an impulse to the handle of the whip that travels to the end and accelerates the ti
to supersonic speed. The impulse which creates a whip crack is studied as a wave travelling along an elastic rod. The whip is
modeled as an inextensible, unshearable, inhomogeneous planar elastic rod. A crack is produced when a section of the whi
breaks the sound barrier. We show by asymptotic analysis that a wave travelling along the whip increases its speed as the radiu
decreases—as the whip tapers. A numerical scheme adapted to account for the varying cross-section and realistic boundar
conditions is presented, and results of several numerical experiments are reported and compared to theoretical predictions. F
nally, we describe the shape of the shock waves emitted by a material point on the whip travelling faster than the speed of sound
© 2003 Elsevier B.V. All rights reserved.

PACS:46.70.Hg; 46.40-f; 05.45—-a

Keywords:Travelling waves; Inhomogeneous; Shock waves; Mach cone; Whips; Elastic rods

1. Introduction

Whips are rather unique objects. Most whips have been developed for the sole purpose of producing a sharg
distinct loud noise, the well-known crack. The physical origin of this sound is a common physics trivia question
whose correct answer is, surprisingly, known by many people. The crack of a whip is a mini-sonic boom, not unlike
the sound of a supersonic bullet, created when the tip of the whip travels faster than the speed of sound. This simple
fact leads naturally to a second question: how does the tip of a whip get accelerated to supersonic velocities? The
initial impulse given to a whip is of moderate velocity, usually less than a tenth of the speed of sound, and within
a few meters this impulse moves to velocities two or three times larger than the speed of sound. Experimental
observations (see below) indicate acceleration in excess of 50,000 times the acceleration of gravity. What are the
physical ingredients necessary to produce such a tremendous acceleration? In this paper we address these questic
in the context of wave dynamics propagating on elastic rods.

There are two different types of whips. The whips we are studying are long, tapered, and single-threaded
whips such as the bullwhip, coachwhip, and snakewhip used to produce cracking noises and not the whips usec
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for torture and other perverse activities which are short, bulky, knotty and multi-threaded such as the infamous
“cat-0’-nine-tails”, and generally of no apparent scientific interest. The origin of noise-making whips is lost in
history as they seem to have been used by early farming communities to direct cattle and horses by various cultures
around the world. The main modern development of whip technology is associated with the European conquest of
the American West and Australia where small whips with short handles were needed for open ranching. Nowadays,
the whip has lost most of its commercial use despite having become a mythical object for Hollywood entertainment
at the hands of Xena, Indiana Jones, and Zorro. The art of the whip is kept alive by a few dedicated craftspeople and
whip enthusiasts (more general references about whips can be found in books and vidée®pe&t a scientific

level, whips with their association to perverse activities and entertainment use, have not received much attention
and only a handful of theoretical and experimental works have been performegd]($eea complete historical
account). Shortly after Mach’s ballistic experiments in the 1880s, it was recognized by Otto Lummer in 1905 that
the crack of a whip is also a sonic boom, created when a section of the whip travels faster than the speed of sound
[5]. Despite some early confusion and discussions about the origin of the crack (early letter exchanges in Scientific
American are particularly interestifig—9]), Lummer’s hypothesis was generally accepted by mainstream scientists
such as PrandflLO], Boys[46], and Bragd11]. Lummer’s insight was finally proved experimentally by Carriére

in 1927[12,13]who showed through high-speed shadow photography that a sonic boom is indeed created by the
whip wave and recorded tip velocities in excess of 900 m/s (the typical speed of sound in the air is around 330 m/s).
Further observations were recorded by Bernstein et al. in I8%Band more recently in 1998, in a beautiful
high-tech, high-speed digital photography experiment by Krehl gtlalvhere acceleration of up to 50,0@Q was

recorded Fig. 1). In the latter two cases, the authors only report the observations of a real bullwhip manipulated by

a circus performer (as opposed to the experiments of Carriére performed with a “laboratory” whip under controlled
acceleration and tension). Moreover, Krehl et al. report the following counter-intuitive observation: a sonic boom
is emitted when the tip velocity reaches abtwitethe speed of sound in air.

Previous theoretical studies on the dynamics of whips have reached seemingly mutually exclusive, contradictory
results, with no apparent reconciliation in the literature. Most of these formulations involved posing the propagation
of a whip wave as a one-dimensional energy probj#6+18] Naively, as a wave travels down a whip, the mass
that is travelling decreases. Thus, in order to maintain energy conservation, the speed must increase. This leads,
however, to some non-intuitive results, such as the speed of the tip approaching [afihitn the other hand,

Steiner and Trogdi 9] have shown that if linear momentum is conserved for an assumed shape, then the speed of
the tip remains constant. The singularity formed at the free-end of a string when the wave reaches the end was also
studied by Zak et a[20]. The speed of the tip of a whip does accelerate as the wave travels down the length of the
whip, but it does not approach infinity, even if it does taper to zero radius. Furthermore, whips made of rods with

Fig. 1. High-speed digital shadow graphs of a cracking whip and its sonic boom. The time interval between the two pictuges iEHel4olid
lines are superimposed over the shock waves. The velocity at the time of the crack was Mach 2.19. Picture courtesy of K4éhl et al.
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Fig. 2. An 8ft Australian stockwhip.

constant cross-section can also be made to crack, discounting the hypothesis that tapering alone can account for tt
phenomenon. These formulations, while interesting, suffer all from the same flaw, which is the failure to account
for the shape of the whip. One cannot simply assume the shape in space of the whip and solve for the velocity; it
obeys physical laws that are coupled to the dynamics. We present in this paper a model where energy, linear anc
angular momenta are conserved in the whip wave, and show that the speed of the tip accelerates as the wave reach
the end of the rod, but that its maximum speed is indeed finite, and the acceleration is related to the tapering, lengtt
and physical characteristics of the rod. However, before we proceed with our analysis, we must understand the true
characteristics of whips and how they are actually handled.

Most whips have three main components (B&e 2). The first part of the whip is the handle, generally made of
wood and ending with a connection to the thong, sometime with a swivel. It is designed to control the second and
main part of the whip, the thong, a long, tapered, finely braided section made of quality leather (kangaroo preferred).
The last important part of the whip is the cracker, a small piece of string that produces the cracking sound and takes
most of the abuse. It is made so that it can easily be replaced after a few hundred cracks. The typical whips used by
coachmen and coach-women for horse training and control have a long handle which is about the same length a
the thong itself. There are fairly easy to crack as the handle provides a huge lever to accelerate the initial impulse.
Snakewhips and bullwhips were developed so that they can be carried in a saddle, they have a short handle an
require practice and dexterity but also allow for a variety of cracks.

How does one crack a whip? Whips can be dangerous for their users. The long thong and cracker under untraine
hands can easily lash back at one’s face or rip one’s pants leaving embarrassing scars. There are two main ways
crack a whip. When given a whip most people will try to move it up and ddwig. (3). This so-calleddlownward

(A) (B)

Fig. 3. The downward snap and a variation, the underhand snap (drawing courtesy of ¢2hjvay
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Fig. 4. (A) The forward crack and variations, (B) the overhead crack, (C) the reverse crack and (D) the figure-eight crack (drawing courtesy of
Conway([21]).

snapcan be carried along different directions and requires sufficient acceleration of the handle to create an efficient
crack. Notice that since the handle is moved during the entire process, work is performed and the energy is not
conserved. This rather intuitive way to crack a whip is not the type of motion privileged by professionals. The most
efficient way to crack a whip, the so-callémtward crack is to move the handle as to create a loop in the whip that
travels to the end of the whip. The same type of crack can be achieved in different planes and direckimn {ee

The key feature that we will use for our analysis is the propagation of a loop along a tapered rod with one end with
controlled tension (the handle) and one free end (the tip).

In analyzing this phenomenon, we study the whip in the context of elastic rods in which the problem can be posed
as one of a wave travelling in an inhomogeneous medium (the inhomogeneity being provided by the tapering).
The propagation of waves along an inhomogeneous background has been a topic of study in sevg22HdHs
the simplest one being the propagation of a water waves arriving at shore where depth varies. In this context, the
analysis of soliton equations such as Korteweg—de Vries and the nonlinear Schrédinger equations have become
paradigmatic. The idea is to study the propagation of solitons in the presence of slowly varying parameters to model
slow changes in the background. Here we study a similar but different problem: the propagation of waves along an
elastic rod in the plane for which the radius varies along its length. We begin with a known travelling loop solution
travelling along an ideal infinite rod. An asymptotic analysis shows that the speed of this travelling wave increases
if the radius of the rod decreases. Numerical analysis is performed to examine the behavior of the rod as the solitary
shape reaches the end of the rod, when the crack is produced. Propagation of similar loops are found in fly-fishing
[29,30] and in sperm motilityf31] (albeit in a highly viscous material where the model proposed here will not
apply). Finally, in recent years, it has been suggested that the tapered tail of apatosorus might have been used as :
giant whip and simulations on the motion of chains based on archeological data shows that part of the tail could
have exceeded the speed of sound in th§l&iy.

This paper is organized as follows. First, we derive the equations governing planar elastic rods with a varying
cross-sectional area. Then, we examine conservation laws and travelling wave solutions to these equations. We
examine how the wave travels when it is far from the end of the rod, and can be approximated by a wave travelling
on an ideal infinite rod. In this context we examine how the speed of a travelling wave is affected by the tapering
of the rod. Second, we turn to the behavior of the wave as it reaches the end of the rod, and rapid acceleration
occurs to create a shock. A dedicated numerical scheme for the rod equations with constant radius and periodic
boundary conditions is modified to take account of the varying radius and different types of boundary conditions.
We calculate numerically the maximum speed of the tip, and how it is related to the tapering and the tension applied
at the handle. Third, we examine the shape of a shock wave emitted from an object travelling in an arbitrary path at
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greater than the speed of sound, and apply this to determine the shock waves emitted from the tip of a whip as it is
cracked.

2. Assumptions and governing equations

We model a whip as an elastic r{#P,33]. Most whips are made from leather, whose elastic constants are known
[34]. However, whips can be made from such mundane items such as strings, cotton ropes, or even wabjowels
In any case, the materials that various whips are made from can all be reasonably modeled as elastic rods. Thi
most efficient means of cracking a whip involve sending a planar IBap 4) down the whip, so we assume that
the rod lies in the Euclidean-y plane, and since the same crack can be performed in vertical or horizontal planes
we neglect the effect of gravity. We also assume that the rod: (i) has circular cross-sections with varying radius
R(s), (i) is inextensible, (iii) is unshearable, (iv) obeys a linear constitutive relationship and, (v) the properties
of the material, such as the density and elastic properties, are constant. We neglect in our analysis the effect o
air friction. This effect is crucial to understand the formation of a sonic boom but not for the acceleration of the
loop itself.

Let (e, &y, €;) be afixed orthonormal basis in the Euclidean space amdsed = xe, + ye, = (x(s, 1), y(s, 1))
be the centerline of the rod in the-y plane, wheres is the arc-length and is time. The tangent vectdris
given by

ar

t= - =netne. )

We define the angle (seeFig. 5) to be the angle betweex andt so that
ty = cos(¢), (2)
ty = sin(y). )

From Frenet’s equatiorj86], we have that’' = «n, wheren is the normal to the curveandk is the curvature so that
k = ¢/. (Here(-)’ denotes differentiation with respect to the arc-lengtand we will denote by-) differentiation
with respect to time.) We call the force and momeft= Fe, + Ge, andM, respectively. The balance of linear
momentum gives

pAX = F/, 4)

pAY =G, (5)

Fig. 5. Arod in the plane. The centerline of the rod is
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wherep is the density per unit volume, antl = A(s) is the cross-section area at the material peifithe linear
constitutive relationship, relating the moment to the stkaiis, withM = Me,,

M = Elk = El/, ©)

whereE is the Young's modulus anfl = I(s) the moment of inertia of the circular cross-section. The balance of
angular momentum generates an equatiorpfor

plp = (Elg") + G cos(p) — F sin(g). (7
Since the cross-sections are circular, we have
A = 7R?, I=%xRY, (8)

whereR = R(s) is the radius of the cross-section. We use the following scaling:

Ro /p- Ro.
t=—[=i, = —7F, 9
2VE =7 ©)

r = 3(Ro)f, F = EnR3F, (10)

whereRp = R(0) is the radius of a cross-section at a given reference point. Notice that, in this scaling;, wiien
s = Ro/2, so the radius of the rod in the new variables is 2 at the reference cross-sectiaRg. Furthermore,
from (7), we see that the speed of sound in the rod is

. ﬁ a1)
0

To relate the speed of a wave in the new variables to the speed in the original variables we notice that a speed of 1
in the new variables correspondsA3/A7 = 1, and that

As AS
AT ™A
so that a speed of 1 in the scaled variables corresponds to the speed of sound in the material (note that the rod
is modeled as being inextensible and therefore sound waves cannot travel in the material. Nevertheless, the value
cm Still provides the proper scaling for flexural waves). The speed of sound in leather is approximately 220 m/s,
comparable to the speed of sound in air, 330[343.
We define the ratio of the area of the cross-section to the reference cross-sectional area,

: (12)

8(s) = ) (13)

If the radius is constang,= 1. Then, the equations become, after scaling and dropping the tildes,

8¢ = F, (14)
8y =G, (15)
8%¢ = (8°¢) + G cosp — F sing (16)

To obtain a closed system of equationsBrG, ¢), we divideEgs. (14) and (13)y §, and differentiate with respect
tos:

F\/
(cosp)” = (§> , (17)
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AN
sino = (5 ) 18)
829 = (8°¢)) + G cosp — F sing. (19)

3. Boundary conditions and conservation laws

The evolution of an initial impulse depends heavily on the boundary conditions. In this section we explain the
various boundary conditions and their physical significance, and derive several conservation laws for the different
cases.

The crack of the whip is created as the wave reaches the end of the whip and creates a rapid acceleration in th
tip. The study of how this acceleration is produced will be done in two stages. First, we study the wave as it proceeds
down the rod, when it is far from the end. By considering the wave to be travelling on an infinite rod, we can derive
relations between the speed of the wave and the radius of the cross-section, and show that the speed of the wa\
increases as the rod tapers. Then, we turn our attention to the behavior of the rod as the wave reaches the end of tf
rod and the crack is produced. The study of the behavior of the wave as it reaches the end of the rod is performec
numerically.

The first case we examine is a quasi-periodic, energy conserving case. In this case, the tension at the two end
of the rod is the same, and so does not represent the case of the whip, in which one end is free. However, by
considering a loop travelling far from the end, and taking the ideal case in which the rod is infinite, we can make
several deductions analytically. This case is also used as a benchmark for our numerical method as it has beel
studied extensively for the case of const&ffor example[37,38)) and we extend some of these results to the case
of a varying cross-sectional area.

For a real whip the end that crackdiiee that is, no force or moment is imposed. The boundary condition at this
end is that the tension and curvature vanish. Thus, for the whip, the boundary condition at the free end is

We consider a whip of length, wheres = 0 corresponds to the point where the rod meets the handle of the whip
ands = L corresponds to the free end. There are several realistic conditions for the left (handle) end. We consider
three cases, two in which the angle of the rod at the handle end is fixedlsi-2.0) = 0, and one in which the rod

at the handle end is allowed to swivel, ig¢(s = 0) = 0. For the two cases in which the angle at the handle end is
fixed, we consider one case in which a constant tension is applied at the handle end, and one in which the handle
end is fixed. The latter case corresponds to the physical case of sending a loop down the rod, and then holding the
handle end so that it does not move. The case of constant tension at the left end has the obvious physical significanc
of sending a loop down the rod and then pulling on the handle to give the tip a further kick. The four cases are
considered as follows:

e Case | (quasi-periodic tension and angle):

ob, D) =¢a, i)+ 27k,  Xa)¢ (a1 =8B (b, 1,  Fla it =Fb1, Gt =Gb,1,
S(BYF (a, 1) = 8(a) F'(b,1),  8(b)G(a,t) = 8(a)G' (b, 1). (21)

e Case Il (no tension at right end, constant tension at left end):

¢ (b,H) =0, Fb,t) =G(b, 1 =0, o(a, t) =0, Fa,t) = a, G(a, ) =0. (22)
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e Case lll (no tension at right end, left end fixed):
¢'(b,1) =0, Fb,Hy=G(b,1 =0, o(a, ) =0, x(a,t) = y(a,t) = 0. (23)
e Case IV (no tension at right end, left end fixed, left end allowed to swivel):

¢ (b, 1) =0, Fb,t)=G(b, 1) =0, ¢(a, ) =0, x(a,t) = y(a, 1) = 0. (24)

Of particular importance for our analysis is the role of conserved quantities such as energy and angular momentum.
Systemq17)—(19)have several conservation laws ($88]) of the form

T, = X,. (25)
The first of these is related to the energy density

T = 3[8%07 + 8% + 80 + yP), (26)

X = 8%05¢: + FX + Gy;. (27)

Thetotal energyH is
b 1 b
H(1) = / Tds = / [6%02 + 8207 + 8(3% + 2] ds, (28)

wherea andb are the endpoints of the rod, which may be infinite. The integrarfd oén be written as the sum
of a potential and a kinetic energy, + K, whereV = §2¢?, andK = §%¢? + 8(i? + 7). The potential energy
V = 822, which is the elastic energy of the rod. The first termkofs §2¢° = §2w?, which is the kinetic energy
associated with a rotation of the basis vectors, or in other words, the rotational kinetic energy. The laskiésm in
8v?, the translational kinetic energy. From the conservation(2&), we see that

%’H =X, 1) —X(a,r. (29)
Thus, the energy at any given time depends on the boundary conditions. In Case I,

dH d b d [ .

—_—_—~ =F _ e )

o (b, 1) o /a cospds + G(b, 1) o /a sing ds (30)
The boundary condition@1) imply that

d2 b d2 b .

a2 /a cosp ds = a2 /a sinpds =0, (31)
so that if

d b d b

— / CoSsyp ds = — f sing ds =0, (32)

dr \ J, dr \ J,

=0 =0

then energy is conserved,

dH

4 =0 (33)

Eq. (32)is the compatibility conditions for conservation of energy in Case |, and we will assume that they hold
throughout the paper when we discuss this case. In Case Il, work is performed, so energy is not conserved, and

H = —ax(a, 1) + H(O). (34)

In Cases lll and IV, energy is conserved for all initial conditions satisfying the boundary conditions.
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Another conservation law of the for(25)is given by
T = 829, 4 5xy, — SyX, (35)
X = 829, + Gx— Fy, (36)

related to theingular momentunt,

b b
L@ = / T = / 820, + 8xy, — 8yx, ds. (37)
a a

Angular momentum is only conserved in Case IV. We summarize the change in energy and angular momentum in
the following table.

d d b b
Casel : EH =0, E'C = G(a)/a COoSyp + F(a)/u sing,
d , d 5
Casell: —H =—ax(a,t), —L=-8@a)ps(a)+ ay(a),
dr dr (38)
caselll: 33 =0 4, 8(a)gs(a)
de T T dr™ Ps\B),
d d
C vV: —H=0 —L=0.
ase dtH \ dtﬁ

Egs. (14) and (15re conservation laws themselves, associated withrtear momenta\t® and M”,

b
M :/ 8x; ds, (39)

b
MY = f Sy; ds. (40)

In Case | the linear momenta are conserved, but in Cases II-IV, they change in proportion to the tension at the left
end.

4. Travelling wave solutions

The most efficient way to crack a whip is to send a planar loop down the Widgp4). Thus, a natural starting
point for examining whip waves is the study of travelling wave solutions. The goveeginations (17)—(1%upport
a travelling loop solution in the case of constanlf we consider a wave travelling far from the endpoints, it can
be approximated by a wave travelling along an ideal infinite [4iJ41] We will examine this case in order to
determine how a wave is altered as the radius of the rod is decreased, but is still far away from the end of the rod.
The boundary conditions consistent with the travelling loop solution are not consistent with the free end condition
for the whip, so this analysis only provides us with some insights on how the speed changes when the loop is far
from the end. We first consider the case whig constant, and look for travelling wave solutions(d7)—(19)
Settingé = s — ct,

sc?(cosp)” = F”, (41)

sc2(sing)” = G, (42)
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82(c?> — 1)¢" = G cosp — F sing, (43)

where(:) = d(-)/d&. We consider an infinite rod which is horizontal-ato, and where the tension atoo is a.
This imposes the boundary conditions

lim ¢= S_Iirpoo G =0, im F=oq (44)

§—>—00 §—>—00

IntegratingEgs. (41) and (42wice, and imposing the above boundary conditions, we find
F = 8c¢? Ccos(¢) + o — 8c?, (45)
G = 8¢ sin(y). (46)

Substituting these int@43), we obtain the equation

Y2 = sin(gp), (47)
where
82(c? - 1)
2
=—— = 48
14 - (48)

Eq. (47)is the “pendulum equation”, with the well-known solution
¢ =4tan™? [exp(iﬂ)] . (49)
14

This solution corresponds to a loop travelling to the right with spedithe + sign in the exponent determines
whether the loop is above or below thexis. We can find the space cuReby solvingx’ = cos(g), y' = sin(¢),
which yields (taking thet- sign, sed-ig. 6)

x(s, 1) =5 — 2y tanh(s_TCt> , (50)

y(s, 1) =2y sech(S_TCt) . (51)

We see that Case | boundary conditi¢®$), and initial conditiong32) are satisfied, so the energyis conserved.
In fact, the energy on this solution is

24— 45[2¢*8 — a(1+ )]

— . 52
JG6Z — a2 -1 (52)

Ay

Fig. 6. Travelling wave solution.
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We solve(48) for «, and using this in the above, we have two equations fordc:

2 2,2
H=4886 +8+yc7 (53)
14

R R -
Y

Therefore, we have a two-parameter family of travelling wave solutions dependi(¥d,@r), or alternatively, on

(c, ). We will see thai53) holds, to first order i is a slowly varying function of the arc-length Then, if the

energyH is constant, we will have a way to solve for the speedithe travelling wave as a function 8&fand hence

of s, for a slowly varying radius of the cross-section.

We also note that the material point at the top of the loop travels at twice the speed of the loop itself. This is actually
true for any travelling loop with constant shape and speed, regardless of the shape, by the following reasonings: (i)
In the frame of reference moving at speethe speed of the travelling loop, all material points are travelling at the
same speed. (ii) In the travelling frame of reference, the shape is constant, and the material points simply travel
along the curve traced out by the loop. Therefore all points must travel at the same speed. (iii) The twe’speeds
andc are equal. That is, in the travelling frame of reference, the speed of material points along the curve traced out
by the loop is the same as the speed of the travelling loop. If we think of a point far to the right of the loop, then
the loop is travelling toward this point with speeth the fixed frame of reference. Therefore, in the moving frame
of reference, this point is travelling toward the loop with speefio, when a material point reaches the top of the
loop, it is travelling at speed in the moving frame of reference travelling at speetivhen the point reaches the
top of the loop, its velocity is tangential to theaxis, so that it is travelling in the same direction as the loop itself.
Thus, the velocity of the material point at the top of the loopdsThis means that for a simple travelling wave,
the maximal speed of a point on the rod is twice the speed of the travelling wave itself. Another way to look at
the problem is to consider a vertical bicycle wheel rolled in a straight line at constant velo&ifyoint on top of
the wheel has a horizontal velocityrelative to the center of the wheel and hence an absolute horizontal velocity
2c¢. This kinematic analysis of travelling waves on rods suggests a simple explanation of the observation by Krehl,
Engemann and Schwenkel that the whip cracks when its maximal tip speed reaches about twice the speed of soun
We see that the loop reaches the speed of sound when the tip reaches twice the speed of sound. It suggests that
is the loop itself, and not the tip, that creates the shock which is not surprising since the loop is ahead of the tip
and is subject to most of the interaction with the flow. However, this simple explanation will not suffice, due to the
fact that the travelling wave solution does not satisfy the boundary conditions for the free end of a whip. When the
travelling wave reaches the end of the whip it unfolds and the travelling loop shape is destroyed; a realistic analysis
of the emission of the shock wave by a movable boundary accelerating in a supersonic flow is necessary to fully
understand the nature of the phenomenon. Nevertheless, without a free boundary condition the maximal speed of
point on a rod with constant radius is twice the speed of the initial travelling loop.

5. Speed of travelling wave on a slowly varying background

Next we study how the travelling wave is affected by a change in the cross-sectional area. We start with the
travelling wave solutiorf50) and (51)ats = —oo, and let it travel in the positive direction. How does the loop
change ag(s) changes? To conserve the energy, the speed may increase as the rod tapers or the speed could ste
constant and the loop increase or decrease in size as to increase the kinetic or elastic energy. We show that fc
realistic initial conditions, the speed does increase and the loop size is essentially constant. We consider a rod whos
cross-section is slowly varying, and expand the conservatiorflaw X, in . We show that, to first order, the
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energy of the loop is constant. Doing so, one can write the speed of the travelling wave as a function of the slowly
varying cross-sectional area.

Consider a rod whose radids= §(es) varies slowly as a function of the arc-length, that i 1. We define the
long space variablg, and the travelling wave variabég as follows[22,42}

S = es, (55)
1 S
== f ) ds — 1. (56)
€Jo
Then,
a[ — _85, (57)
05 — £(8)0¢ + €0s. (58)

The motivation behind this change of variables is that we would like to determine how the speed and shape of the
loop change when the cross-sectional @rgl@anges. For the travelling loop whéis constant; = 1/c¢. We will see

that, to first order, the speed of the loop is given y(%), a function of the long space variable. The conservation

law, in these variables, is

Te + ((S)Xe +€X5 = 0. (59)
ExpandingT’, X and¢ in €, and collecting terms i(69), we have
O Tog+ oXoe = O, (60)
O : Ti + 1 Xoe + LoX1e + Xos = 0. (61)

Integrating the®(e!) equation with respect t, and assuming that and X vanish até = +oo, we obtain the
condition

5 [
35 g Xodé =0. (62)
From theO(e®) equation, we see that
ii/OoTod§=O. (63)
98 o Joo

Note that(63) holds for an arbitrary conservation léiiv= X with appropriate boundary conditions. Now we take
T and X to be as in26) and (27)and expan@ in ¢, with ¢g the travelling wave solutio(49)

@0 = 4tan~?! [exp <i%)} . (64)
If we let
fi=t /OO To dg, (65)
%0 Joo

then di/dS = 0. A straightforward calculation shows that

s(1
4;;‘3[ ( :§)+ }FO(G) (66)

14 é‘o
We see that the energy relati@B) holds, in the case whehis a function ofS, and thatH is constant, to ordex.

H=
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The speed and height 2 of the loop, are given, to first order by

(8 = — ) =~
C = —, V4 = —.

o(S) ¢o(S)
We conclude that the relatiof§3) and (54hold, in the case whehis a function ofS, and thatH is constant, to
ordere.

We can now usé&q. (53)to calculate the first order relation of the speeak a function of. There are several
cases, depending on the behavior of the tension and the height of thexlangdy. We will see in the numerical
experiments below, with quasi-periodic boundary conditions on a finite interval, that the height of the loop remains
mostly constant, while the tension at the ends varies.

Solving(53)for ¢, the speed of the loop is given by

2 ]/H 1)
ct = - .
458 +y2) S+ y?

This equation gives the speedaf the loop as a function af, and hence of, to first order, in the case when the

height 2/ of the loop is constant, as in the quasi-periodic case. In the preceding eqiaisometermined by the

speed of the loop at any given point, such as the initial condition. Then the relation gives the speed at each point

along the rod. We see that the speed decreases as the rod tapers, as expected; andthas the rod tapers to

zero,8 — 0. Notice also that as a function of passes through zero &t= ./y#/4 and that there is no (real)

solution for largers. Thus, a wave that is travelling on a rod whose cross-sectional ameeréasingwill slow

down, and stop. At this reflection point all of the energy of the rod is potential. In the numerical experiments below,

we show that the wave slows to zero speed, and then turns around and starts travelling in the opposite direction.
We may also consider the case of the infinite rod, in which the tension at the ends is held constant. In this case

relations(53) and (54hold, to first order, withw constant. We can thus calculate both the spesad height 2 as

functions of the radius of the rod. A straightforward calculation shows)tlsatisfies

(67)

(68)

H HS  26°
4 3 2
=y —— 5 —y——=0. 69
f ==y + oyt oy = — (69)
There are two cases, as illustratedig. 7:
H
Casel: ¢ — oo, y—>a ass — 0, (70)
Case2: ¢c—1, y—>0 asé— 0. (71)

Note that the curve®, y) and(s, ¢) must pass througfi, -), sinces = listhe reference cross-section, which is why
in Fig. 7, only one branch of the curves represent the actual behavicrady. Let§* be the point where two roots
of f(y) become imaginary, ang be the largest root of. We see that in the case where> 1, f/(y;)|s=s+ = O,
but in the case where — oo, f/'(¥;)|s=s+ > 0. Thus, a bifurcation occurs whefi(y;)|s—s+ goes to zero. Notice
that at§ = «,

) = (2 — @) (day® — Hy + 8a®). (72)

Thus, atH? — 1283 = 0, two solutions coalesce. This is, in fact, the bifurcation point, because, at this point,
yi=v* =H/8a =2a"%2,

f(y*)|7-[2=128a3 = f/(V*)|H2=12313 =0, (73)

f//(y*)lf;.[Z:lzng =20 > 0, (74)
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¢Y

2

15

0.5

(d)

©

Fig. 7. Two possihilities: either (a) ¢ goesto oo, or (b) ¢ goesto 1 as§ — 0. The solid curveis ¢; the dash-dotted curveis y. The thicker curves
are the curves representing the behavior of ¢ and y. The graphs (c) and (d) represent f(y) in the cases (a) and (b), respectively, at § = §*, where
§* isthe point where two roots of f(y) becomeimaginary.

and the y and ¢ curves cross at
§=a, J/=x/_20f3/2, Sd=a, c¢c=1, (75)

respectively. The behavior of ¢ as§ — 0 also depends on which branch of the curve ¢ ison. Since y and ¢ must be
defined at § = 1, the reference ratio of areas, we define the initial speed and height of the travelling wave to be at
s=1L

ci=c(6=1), Y=y =1). (76)
We notethat if ¢; > 1thenc — oo asé — 0. Therefore, we have the conditions

if #2-1280°>0 or ¢ >1 then c— 0o, y— 2(H)a as 8 — 0, (77)

if #H2—-1280°<0 and ¢i<1 thenc—1, y—>0ass— 0. (78)

Since the radius of the rod in the scaled variablesis 2, it must bethat j; > 2 to be physically realistic. We compute
the behavior for realistic rods as follows. Note that

H2 — 1280 = ;—g{yﬁ[l + A2+ D)2 — 81+ A2 - D). (79)
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e}
Fig. 8. () The curves ¢ and y at the bifurcation point, #2 — 12803 = 0. (b) If ¢; > 1 thenc — oo ass — 0.
Thus, forO<c¢ <1, % > 1,
2 3 16 4 2.2 2 2.2 3
H®—128a” = —{yi' [1+¢f (f — DI” = 81+ ¢ () — D]"}
Vi
16
= sl 07 = DI - 8L+ =D} > 0 (80)
i

if 3 > 2%/4. Sincewe assumethat theinitial speed of aloop is subsonic, and the radius of therod is 2, al physically
realistic solutionshave 0 < ¢ < 1, ; > 2%/4. Thus, for al physically redistic casesc — oo as§ — 0.

We further note that, as in the case of constant loop size, in the case when the tension is held constant, a loop
travelling on arod whose cross-sectional areaisincreasingwill slow down, and stop. The point at which the wave
stopsis determined by finding the value of § = H/4./a such that ¢ = O (see Figs. 7 and 8).

6. Numerical ssmulations

We now turn to acomplete description of the behavior of thewhip with realistic boundary conditions. Theanalysis
presented above can only be applied away from the end when the assumptions on the variation of tension and the
boundary conditions are valid. Close to the end, a numerical analysis is necessary to complete the description. A
dedicated scheme for solving (17)—(19) was developed by Falk and Xu [38,43,44]. This scheme was devel oped
for the particular case (Case |) of a constant radius and periodic boundary conditions. We present an extension of
the scheme to incorporate the varying radius and different boundary conditions. While the inclusion of tapering in
the algorithm is straightforward the main challengeis to adapt it as to include different types of realistic boundary
conditions and prove the conservation of discrete versions of the conservation laws (such as energy and angular
momentum).

We discretize the interval [0, L] into N equally spaced mesh points s, sj+1 —s; = L/N = h, and time is
discretized into steps of duration 7, with the ratio v = 7/ h set equal to 1/2, below the limit of the classical CFL
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condition for stability, v = 1/+/2 (cf. [45, p. 489)]). The discrete version of (17)<(19) is

1
2 N —
AZcost] = A {S_jAh f]"}

1
26ng" — AT -
AzsSng} = A {—Ahg;*},

207

(81)

(82)

(83)

(84)

(85)

8; = &(hj),ande}, £, and g} areapproximatevaluesof ¢(jh, n7), F(jh, n7),and G(jh, nt). Thediscrete derivatives

8j
1 1
A0} — AGO) = EA;(S?A;@Z + ;[gyc"(ej) — f}8"©O)],
J J
where
n+1 n—1
—(cosej — cosej ) i gl g1
§"(0;) = J J
iagn—1 f n+l _ an—1
smej if ej =0"
in g+l inpn—1
sng; " — sing; it ot gt
S CHES J j
n—1 ; n+1l _ gn—1
coso’ if 0,7 =67,
are defined by
2. n 1 n+1 n n—1 2. n 1 n n n
Arujzﬁ(uj —2uj+uj ), Ahu,-=ﬁ(uj+1—2uj+“j—1)’
_ 1 1
A, u'/’ = E(u;' —u;’»_l), AZ“? = E(uﬁ_l—u;@).

The discrete versions of x and y are,
j—1
X =xi+h) " cost,
i=1

j—1
Yi=yp+hy_ sne,
i=1

where x} and y;; will be determined from the conditions

1
2 —
Arx? = _8]- Ay f]'-’,

1
2 —
ATY7 = ;Ah g?-
J
It is clear from the definition that
+ _
A, x;f = cosQ’},

+.n _ o n
Ay _smej.

(86)

(87)

(89)

(89)

(90)

(91)

(92)
(93)
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The discrete boundary conditions, corresponding to the four cases (21)—24), are:

e Casel (quasi-periodic tension and angle):

f=r =gk Oht2mk=0k, O -6 = KOs — ),

81(fyp1 — fv) = dna(fT — fO)s 81(gy41 — &) = dn+1(81 — g0)- (94)
e Casell (notension at right end, constant tension at |eft end):

fi=a,  gh=0  gh=fi=0 @, =6, 6=0 (95)

e Caselll (notension at right end, left end fixed):

fv=8ev=0  Oy=0y 6=0  x;=y,=0 (96)
e CaselV (notension at right end, left end fixed, left end allowed to swivel):

fv=8ev=0  Oynu=0y =0 x=y,=0 97)

The main idea behind the schemeis to solve (81) and (82) for f ]” g’} , and use these values to form one semilinear

equation for 9’; from (83), whichissolved for 9?*1, iteratively. The method is designed to preserve adiscrete version
of the energy. The discrete energy is given by

N

h —nn —nn n
En = 5 D AB5ATOD? + 55(AL 01 (AL 07 + 8,1(ATx)? + (AT Y]} (98)
j=1

Conservation of energy is central to the development of the method, so we first present the following lemma (for a
proof see Appendix A).

Lemma6.1. For everyn > 0, we haveE, 1 = E, + R,, whereR, is given by
R = 3[03,1 8 O O3 — O D) — S1AT 660" — 07D + Sy (ks — i)
— T =Y + g O — v — gaon T =y h) (99)

We see how the energy is conserved in the four cases. In Case I, the equations and boundary conditions imply that

N

AZY " cosd = 0. (100)
j=1

Thus, if

N N

> cost? =" cosoy, (101)

=1 =1

N N

> sng? =" sing}, (102)

=1 =1

then R, = 0, and the discrete energy is conserved in Case I. In [43], Coleman and Xu present an agorithm for
calculating 6% * such that (101) and (102) hold.
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In Casell, we have
Ry = -3 =2 h. (103)

In Caseslll and IV, R,, = 0, and the discrete energy is conserved. We a so define the discrete angular momentum
N
Ly =h) {50707 +8;(x" Afx” 1o YIAtY” bHi. (104)

The discrete angular momentum is not conserved in any of the four cases. This is due to the fact that we use an
approximation for the cosine and sine in (83), but fluctuations in the discrete angular momentum in Case |V are
very small, and decrease to zero as the number of spatial pointsisincreased. Details on the numerical scheme and
itsimplementation are provided in Appendix A.

6.1. Numerical results

Asabenchmark, we first compare the results in the quasi-periodic case, starting with the known travelling wave
solution, to see that the analytic solution is recovered. We also verify that the energy is conserved, and matches
the analytically determined energy. Fluctuations in the energy occur because of the necessity of accepting an
approximate sol ution to the semi-linear equation (A.30) for ¢';, and in Case| additional fluctuations occur dueto the
factthat > cos@;? isnot conserved exactly. In Case |, fluctuations in the energy were always less than 0.008%, and
in Cases |11 and 1V aways less than 0.00005%. In Case IV, where the analytical angular momentum is conserved,
the fluctuations in the discrete angular momentum were always less than 0.0007%.

Case | Results of numerical calculations for constant § are summarized by Coleman and Xu [43]. When we
allow the radius of the rod to vary, we obtain results consistent with the analytical predictions, i.e. that the speed
increases or decreases as the cross-sectional area decreases or increases, according to relation (68) the speed of the
loop is given by

2 yH 8

A +yE) s+
Calculationsin Case | are done in the scaled variables. Figs. 9 and 10 show results in the case where the radius is
decreasing, and Figs. 9 and 10 show results in the case where the radius is increasing. From Figs. 9 and 11 we see
that the height of the loop remains almost constant asthe speed increases and decreases, respectively. Thisis, infact,
generaly true. Thus, we may calculate the speed of the travelling loop from (105) and compare it with the speed
calculated numerically. In Figs. 10B and 12B we see that the analytically and numerically computed speeds match
amost identically. In Figs. 10 and 12 are two graphs. In graph (A) we show the speed of the loop as a function of
time. On the same graph is shown the value of § at the material point at the top of the loop. In graph (B) the speed of

(105)

y t=0 25

Accelerated wave
11M SL y

0 2 12 14 16 18 20

Fig. 9. Traveling wave solution with § = 1 (top) and numerical solution at timest = 0, 2.5, 5, 7.5, 10 with §(s) = 1 — (1/2)(s/L).
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0.7 0.75 0.8 0.85 0.9

Fig. 10. Speed of loop asafunction of § with A = 1/2. The solid curve isthe analytically computed speed of the loop, as determined from (105),
and the +' s are the numerically computed speed of the loop.

theloop is shown as afunction of §, by computing the speed of the loop at each time step, and plotting that against
the value of § at the material point at the top of theloop. In Figs. 11 and 12 are shown the results of calculations for
arod whose radiusisincreasing. We see that the speed of the loop decreasesto zero, and then the loop turns around
and travelsin the opposite direction.

Case Il Inorder to measure the effects of the boundary conditions, tension and tapering in the rod on the maximal
speed of the tip of the rod, we must take into account how the material points behave without these effects. Since
the speed of the material point at the top of atravelling loop is twice the speed of the loop itself, we define a new
guantity to measure the increase of the maximum speed of amaterial point on the rod:

maximum speed of tip
o= 2¢; ’
where ¢j isthe initial speed of the loop. We see that without the free boundary condition, and without tapering, for
the travelling loop, o = 1. Thus, o measures the increase in the maximal speed of the tip due to the various effects
we consider. For the simulations in which we compare the tapering and the tension to the maximum speed of the
tip, we take the initial loop to be centered on the rod, that is, the top of theloopisat s = L /2. The tapering of the
rod is chosen to be alinear function,

S
8(9) =1—hr. (107)

(106)
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Fig. 11. Traveling wave for § = 1 (left) and numerical solution at timess = 0, 3.75, 7.5, 11.25, 15 with §(s) = (1/2)(1 + (s/L)).
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Fig. 12. (A) Speed of loop and § at the top of the loop as a function of time, for an increasing radius, §(s) = (1/2)(1+ (s/L)). (B) Speed of
loop as afunction of 5. The analytical curve is computed from (105).
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Fig. 13. Maximum tip speed vs. tension at handlein Case I1. In this case, the rod is 2m long, and the typical radiusis 1cm. The height of the
initial loop 2y; isy; = L/10.

Thus, A isameasure of thetapering in therod. A rod without tapering has A = 0, and arod that tapersto zero radius
atitstiphasi = 1.

When we apply a fixed tension at the handle end, energy is not conserved, as work is performed when the left
end accelerates. In Fig. 13 we see that the maximum tip speed increases (almost) linearly as the tension applied
at the left end increases. No general relation between o and the tension applied at the handle is computed, as the
maximal tip speed depends also on the initial speed and size of the loop. However, we see that for a given initial
speed and size of the loop, the maximal tip speed is almost linear in the applied tension. We aso note that the
acceleration of thetip is greater when the initial speed of the loop is smaller, although the final tip speed is greater
for afaster initial speed. In Fig. 14 we see the result of one simulation in Case I1, as the whip unfolds. In this case,
the loop is started toward the right end of the rod, and a large tension is applied at the left end. If one applies the
same tension with a loop at the middle of the rod, the loop is simply pulled through, and the acceleration of the
tip isnot great. Such acaseisseenin Fig. 15. The lesson isthat in order to produce alarge acceleration in the tip,
the loop must accelerate until it is close to the end of the rod. This is consistent with the way whips are cracked:
one sends a loop down the rod, which accelerates as the rod tapers, and then one applies a tension as the loop
reachesthe end of therod to provide an extrakick. In thisway, alarge acceleration, with an associated loud crack, is
produced.

Case lIl In Fig. 16 we see theresults of several simulations, in which the maximum speed of the tip is compared
with the tapering in the rod. We show several simulations with different values of the tapering A. We see that for an
untapered rod, for which A = 0, the maximum speed of thetip isbetween 4 and 6 timesthe initial speed of theloop,
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meters

0 05 1 15 2 25

Fig. 14. Unfolding of tipin CaseIl. Therod is2m long, and the typical radiusis 1 cm; initial speed and height of loop are ¢; = 0.5, y; = L/10;
applied tension is 120kN. Elapsed timeis0.007 s.

or o is between 2 and 3, the acceleration due solely to the free boundary condition. This acceleration, sometimes
refer to as the “Kucharski effect” is due to the rotation of the tip around the horizontal axis as the loop reaches the
end [16]. Asthe tapering increases the maximum speed of thetip increases. At the maximal tapering, when the area
of the cross-section at the end of thetip is 1/20 the area at the handle, we get another doubling of the maximum tip
speed. Again, no general relation between the tapering and the maximal tip speed has been found analytically, but
ageneral trend can be observed. The maximal tip speed increases nonlinearly as afunction of the tapering, with no
obvious scaling. We do see, however, that the tapering has a greater effect on the maximal tip speed than does the
increase of applied tensionin Case Il. Asin Case 1, acceleration is greater for a slower initial speed, although for
agreater initial speed, the maximal tip speed is greater. Fig. 17 shows aresult of one simulation in this case, asthe
tip of the whip unfolds.

Case IV Resultsin Case |V, where the whip is alowed to swivel at the handle, are essentially indistinguishable
from Caselll. That is, there seemsto be no advantage or disadvantage in alowing the swiveling, at least in the case
where aloop is sent down the whip as we have prescribed. This could explain why there seemsto be no preference
among whip-makers for swiveling or non-swiveling thongs.

meters
02
O e.
NI <
C. b. - -
02 :
meters
1 1 1 1 1 1 1 1 1
0.2 0.4 0.6 0.8 1 1.2 14 16 18

Fig. 15. High tension applied too early in Case Il. The rod is 2m long, and the typical radius is 1cm; initial speed and height of loop are
¢i = 0.1, 5 = L/10; applied tension is 80kN. The triangles are the | eft (handle) end of the whip, and the thicker curve istheinitial condition.
Elapsed timeis 0.005s.
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Fig. 16. Maximum tip speed vs. tapering of cross-sectional areain Caselll. In this case, the rod is 2m long, and the typical radiusis 1 cm.
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Fig. 17. Unfolding of tipin CaseIll. Therod is2m long, and the typical radiusis 1 cm; initial speed and height of loop arec; = 0.5, 3 = L/10.
Thereisno tapering. Curve (a) istheinitial condition, curve (b) isthe rod at the time of the maximal speed of thetip, and curve (c) istherod at
the end time, 0.02s.

7. Shock waves

A whip produces a crack when a section of the whip travels faster than the speed of sound and creates a mini
sonic boom. We have already addressed the puzzling observation of Krehl et al. concerning the speed of thetip as
the shock wave is emitted. The main question is which part of the whip is actually creating the sonic boom, the
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(b)

Fig. 18. The Mach cone of an object travelling in astraight line. (b) A bullet travelling faster than the speed of sound. (b) Illustration of the Mach
cone. The thinner circles are the sound waves, the thicker lines are the shock waves. The dashed lineis the path of the object.

tip or a section of the whip. To try to answer this question, we compute the geometric (linear) shock wave that is
emitted by the tip as the whip unfolds.

When an object travel sfaster than the speed of sound, ashock wavésformed. For an object travellingin astraight
line, the first approximation of the shock wave is given by the Mach conebecause the shock wave is in the shape
of a cone following the object. This phenomenon can be observed, for example, in the wake that follows a swiftly
moving boat, or in the shock wave following a bullet, asin Fig. 18a. We now compute a similar approximation for
the shape of the shock wave in the case of an object travelling in an arbitrary path. We will apply this to the case of
the tip of the cracking whip to see how the shock wave emanates from a cracking whip.

In the linear theory, a shock wave isformed by the envelope of infinitely many sound wave fronts meeting at the
same curve. Consider first the case of an object travelling with constant speed along a straight line, asin Fig. 18.
L et the speed of sound be v, and the speed of the abject be vg. If the object |eaves the origin at time O, it reaches
(vot, 0) at timet. Thus, let x(s) = (vos, 0) be the path of the object. At each point s the object emits a sound wave,
whose front at time ¢ isacircle centered at (vgs, 0), with radius v, (¢t — s). The shock wave is the envelope of these
sound waves. At time ¢ thisis a curve which we call z(s; 7).

We calculate the shock wave curve z(s; 1) as follows. Let y(s; 1) be the line from (vgs, 0) to the tangent of the
circleto x(r) = (vot, 0). The Mach cone z is then determined as the set of all the tangent points. The angle between
y(s; 1) and X(s; 1) is determined by the condition

Yool wl—s) v

OO = =9 " wli—s w0 (108)
Thus, the envelope z(s; 7) is given by

z(s; 1) = (vos, 0) +Y(s; 1), (109)
where y(s; t) is determined by the system

.0 ny/g g| - (110

ly(s; D] = vs(t —5). (111)

The envelope z(s; ¢) is aspace curve defined for every ¢ > 0, for 0 < s < ¢. In this case of an object travelling on a
straight path with constant velocity, asin Fig. 18, the Mach cone at each time ¢, is given by

2(s; 1) = (s + iz(t —95), (@ —39) 5 1 . (112)
V5 v5—1
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Fig. 19. The shock wave of an object travelling in a curved path. The thinner circles are the sound waves, the thicker lines are the shock waves.
The dashed line is the path of the object.

The case of an object travelling on a straight path can be easily generalized to the case of an object travelling along
an arbitrary path, x(s). Again, the envelope of the sound waves, which is the shock wave, is given by the curve
z(s; 1). Apparently (see Fig. 19), zisgiven by

z(s; 1) = X(s) + y(s; 1), (113)
where y(s; 1) is determined by the system

X'(s) y(sin) vy

X Iyl vo’

ly(s; D] = vs(t — ). (115)

(114)

We can further generalize the above to the case of an object travelling along an arbitrary path with an arbitrary
speed. In the above, we have assumed that the speed of the object vg is constant, or in other words that |X'(s)| =
vo = constant. Now we alow that v(s) = X/(s) varies along the path of the object. The distance the object travels
fromstozris

t
dis; 1) = / V(s ds'. (116)

Then, the shock wave is still given by (113), but with y defined by
X'(9) Yy v(t—y)
X Iy ol [ ve)lds”
ly(s; D] = vs(t — ). (118)

We note, also, that the above formulation isvalid in three dimensions as well. Given a path x(s), in three-space, the
shock wave is defined by (113), wherey is defined by (117) and (118). The difference now is that these equations
define acurve, instead of two points, for each s, 7. The shock wave, for each time1, isthen a surface in three-space.
For example, an object travelling at constant speed vg aong the x-axis would have the Mach cone,

1 [ 1 _ [ 1
Z2(s,0; 1) = (s + v—(z)(t —5), Cos(O)(t — s) v%——l’ sin (@) (t — s) v% — 1) , (119)

asurface for each time.

(117)

7.1. Numerical computation of shock waves

We now compute the shock wave which isthe crack of the whip, for the ssimulation seenin Fig. 14. In Fig. 20 we
see the results of this calculation, in which shock waves are computed coming from the tip of the rod. Comparing
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Fig. 20. Numerical solution in Case Il at various times. The solid curves are the rod; the dashed curve is the path the tip of the whip travels; the
dash-dotted curves are the shock waves.

this result to the photographs of Krehl et al. in Fig. 1, we see that the shock waves as computed from coming off of
the curve the tip of the whip travels, are consistent with those photographed in actual whip cracks. This suggests
that is, in fact, the tip of the whip, or asmall section of the rod near thetip, that produces the crack.

8. Conclusions

As anybody who has cracked a whip can attest, producing aloud crack requires a subtle combination of motion
to create an initial loop and let it travel along the whip to the end. Similarly, we found at the numerical level, that
it takes a fair amount of experimenting with various boundary conditions, speeds and tensions, to find the correct
parameters so that the tip accelerates sufficiently to produce a crack. The most efficient way to crack a whip, in
terms of producing the loudest crack for the least amount of effort, isto send a planar loop down atapering rod with
extra applied tension to provide further acceleration. The same type of motion isfound in fly-fishing where tension
is used to optimize athrow [29].

The crack itself isasonic boom created when a section of thewhip at itstip travel sfaster than the speed of sound.
The rapid acceleration of the tip of the whip is created when a wave travels to the end of the rod, and the energy
consisting of thekinetic energy of themoving loop, theelastic energy storedintheloop, and the angular momentum of
therod isconcentrated into asmall section of therod, which isthen transferred into accel eration of the end of therod.

Several factors combineto create awave with ahigh speed asit travelsto the end of therod. Additional tension at
the handle end, increasing the speed of theinitial loop, and the tapering in therod all serve to increase the maximum
speed of thetip of the rod. The main effect seems to be the tapering in the rod, which increases the maximal speed
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nonlinearly. Thus, the main key in successful whip cracking seemsto bein the design of an efficient elastic tapered
whip as both whip artists and craftspeople will tell you.
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Appendix A. Numerical scheme
A.1. Proof of Lemma 6.1

LemmaA.l. For everyn > 0, we haveE, 1 = E, + R,, whereE, is defined by98), and R, is given by

Rn — [5N+1A+9 (9n+l Qn]\] l) _ 52A+9 (9n+l 9871) + f[r\l/(xr[l\:_l]_ xN_H_ fO (xn+l _ X’;_ 1)

1
2
+g1v(yr/i/4._|_11 yN+1)_go(yn+1 yl )] (A1)

Proof. Wefirst multiply Eq. (83) by (S?h(ej?” — 9'/.’_1), and sumfrom j = 1to N. Theleft-hand side of theresulting
equation is, after summing by parts the second term, and simplifying,

N
LHS =1y " 85(Af0)% — h 82(A+6" 1)2+h (SZA 9”+1A 9"—h 62A TN 1
j T
j—l

+hZA 53N, 0" 9”+1 0" D) — 83 A oL@y — oY + 83A anent — g5 h. (A.2)

For the right-hand side of the equation we use the fact

e I A3
h ’ '

cose;“rl - cosejf‘l -

and hence

j=1 j=1
— _Z(f7 _ ;-1_1)()(;%_'—1 - 1) + fN(x’/l\/_:ll N+l) _ fO (xn—i-l n l)
N
= —h Y 8 AZI T = XY 4+ NGNS - D) - G =T, (A.4)

and the fact that Afx’}(x;?“ - x;?‘l) = (Afx")? = (AFX)T 12, to compute
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N
— 2 A 1 1 1,2
RHS =h) A, 85A, 670111 —01-) — hZS (AT — (aFxH]
j=1

N
—h Z SiLATYH? = (ATYITH + h(85 41 — S AL O 1 O — 0D

_ /’1(81 80)A en(en+l en—l) + f[)\i](xn—i-l X' 1) . fO (xn+l n l)

N+1 N+l
+ e Ot — VD) — g =y h. (A5)
Comparing the RHS with the LHS, we see that the lemma holds. O

A.2. Case | numerics

We first describe the numerical scheme for Case . Then we will describe how the scheme is modified for Cases
Il and I11.
We start by solving (81) and (82) for f ]" g’]’.. Setting

A1 = (1 + ! A1 = ! (A.6)
1 1/1 1 1
Ajj1=—5— Ajj=—=(=+—"—)., A juu=—5— ifl<j<N, AT
Jij—1 /’l28j Jij 2 (81 + 8j+1) Jj+1 h25j+1 <J< (A7)
1 1
AN1= —5—, ANN-1= —5—, A.8
NS o NN-1= 7 (A.8)
An=1 for 1<j<N, (A.9
Ajj =0 otherwise, (A.10)
1/1 1 1 1)\
d=—=1{1-—,00,...,0, —, — | — + — , A.l1
h? (80 SN (81 + 8N>> ( )
and
= (AN ifi<N, Af=0, (A.12)
=—(A7Yd);, if i<N, by=1, (A.13)
andletting f}' = (f7. f5...., f;?,)T, and similarly for g, then (81) and (82) are solved by
P =bf" +AT(A%c0s6;, A2costl, ..., A2costy)T, (A.14)
gl =bg" + At(A2sine}, A2sings, ..., A%sing})T, (A.15)
where
== r P =gh=gy (A.16)
with the compatibility condition
N N
AZ) cost} =0, AZ) sing)=0. (A.17)

j=1 j=1
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In order to simplify notation, and conform to the notation in [43], we will call

c = (AZcosH), A%costh, ..., A2costh)T,

1
s=(A2sing}, A2sind}, ..., A%sney)", K= —E(A+)T. (A.18)
We next make afew definitions to be used in the scheme.
5 L L 1 1
8"(0;) = 2/0 /0 ESin(nEé’;’+ +@Q- n)éé’j’ +1- 5)6’?7 ) dn dé,

L L
Co) =2 fo /0 £Cos (0 + (1— mEd) + (1— £)F1 ) di .

§"(0;.0) = —S"O)C"(B) + C"(0)5" 6). C" (01, 05) = S"(0))S"(6) + C" () C" (). (A.19)

Next, we use the solution for f, g, to form a single semi-linear equation for 6. Substituting (A.14) and (A.15) into
(83), we have

1 b, - . 1
AZ9} — AZD = EAZ&?A?{O? + 8—;_[— FrS"6) + 8" Ccr )] + E[—(A%),s" ) + (ATs),;C"())].
J J J

(A.20)
A simple calculation shows that
cj = AZcost) = —S"(0))A%0] — C" (O AT ATe (A.21)
sj=AZsng) = C"(0)A20] — 3" () Ao ATOTL, (A.22)
Another calculation shows
1 h N N
8—2[—(A+c)js" @) + (A*s);C" (@] = 7 [— D KiCM(6i,0) A% + > KijS" (6, ej)Aje?Ajeg’l} :
J J i=1 i=1
(A.23)

Substitution into (A.20) yields
h & b
AZ07 — NGO+ e Z KijC" (6;, ) (A0 — A207) = B"(0;), + 8—%[—]”15"(9,-) +38"'C" )], (A.24)
Ji=1 J
where
h N

N
1 5 h A -1 P 2
B"(6n); = ﬁA;’SjAZO;? + 2 § KijS" (6, 0) AT O ATO T — 2 § KijC"(0;,0,)A701. (A.25)
J J i=1 J i=1



T. McMillen, A. Goriely / Physica D 184 (2003) 192-225 221

Summation by parts shows that

N N
hY KiC (6, 0)AR0} = =) (KjC"(6:,0)) — Ki—1,jC" (0i-1, 0)) A, 6}
i=1 i=2
1 8% i ~n n n
+o 67KNJ-C (On,0)) — K1,C" (61, 0)) | (6] — O + 27k). (A.26)
N
Therefore,

N
1 h . _
B (6h); = EAZ&?AZ@? + 5 > O KiS 0, 0) AT AT

J J i=1
L g KijC"(6:,6,) — Ki_1,;C"(6;_1.6)) A, 67
+5_2 ( ij (i, /)_ i—1,j (Bi-1, /)) nYi
Ji=2
1 8(% ~n ~n n n
—— | = KnNiC" (0N, 6)) — K1;C" (61, 6;) | (6] — Oy + 27k). (A.27)
hss \ &%
We are thus able to form the semi-linear equation. Setting
h A
(Lg,)ij = 8—2Kji C" (0}, 6:), (A.28)
J
b, - R
A" On)j = S[=F"S" @) +§"C"OPI + B" 6w, (A.29)

J
Eqg. (A.20) isequivalent to
A207 — A20" = (I + Lg,)"2A"(6)). (A.30)

Eq. (A.30) is a semi-linear equation. In order to form a semi-linear equation for 6 only, we next solve for £, 8".
Let

b4
SK () = 5—;5”(9,), (A.31)
J

b.
Cb'(9)) = 8—§6”<9j). (A.32)
J

Multiplying (A.30) by $”(#,)" and C"(6,)", respectively, and summing by parts, assuming the compatibility
condition (A.17), the following relations hold:

N N
an @) f" + a0 =) C"ONATO AT =" DS O) A 07 + SO0 + L) B (6h),
Jj=1 j=1
(A.33)
N N
az (On) " + an@)g ==Y S"ONATO AT =3 "D CMO) A0} + C" O+ La,) B O),
j=1 Jj=1

(A.34)
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where
Diuj= % if 2< <N, (A.35)
Dyup = w (A.36)
and
a11(0n) = S"(On) " (1 + Lg,) " TSB'(6h), (A.37)
a12(0n) = —5" ()" (I + Lg,)~"CH' (). (A.38)
azn @) = C" )" (I + Lg,)"'SB 6h), (A.39)
az @) = —C" ()" (I + Lg,) " *CH' (0. (A.40)

Thus, if we assume a priori that (A.33) and (A.34) hold, then the compatibility condition (A.17) is automatically
satisfied. Thus, we solvefor f”, g", and substitute the result into (A.30), then we have a semilinear equation for 6
only.

Accordingly, we form the semilinear equation for 8, and solve for "1 iteratively. Letting

GO 08, 017 = (1 + Lg,) "TA"Gp), (A.41)
we define the iteration:

1

SE 28 e - Afgy = 6@ 6. 67D, (A.42)

o0 = 207 — oL, (A.43)

We iterate until |6 %1 — ¢/ +1¥)| < tol, where tol is typically 10~8. Once 6" has been calculated, 7, ¢" are
defined by (A.14) and (A.15), and x;!, y;? by (88) and (89). All that remainsisto calculate x” and y!. These must
satisfy

¥ 1 —
A2x" = 8—1Ah L, (A.44)
2.n 1 - n
ALy, = gAh 81 (A.45)

The set of eguations (A.44) and (A.45) forms a linear system, which we solve by Gaussian elimination, after
the calculation of al the 0;?. There is still one degree of freedom, in which one can add a line to the solution,
corresponding to moving the inertial frame of reference.

A.3. Case Il numerics

In Casell, we can solvefor f}, g, with the boundary conditionsin (95), directly by inverting amatrix, asthere
is no compatibility condition. We solvefor f;, and g, in (A.14) and (A.15) by setting

= (f1 for ooy fu—1, fN41)s (A.46)
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and similarly for g . Then fh and gj are solved by

o

= A"1(A2cose — yEre A2cosdl, ..., A2costi)T, (A.47)
1
"= A~H(A2dne), A2sings, ..., AZsingl)T, (A.48)
where A is now
1/1 1 1
A - — | = — ), A = —, A49
11 2 <81 + 52) 1,2 125, ( )
A 1 A 1 <1 +—1 ) A 1 oo (A.50)
1= 7 === ’ 1= <j<N, _
H h2s; M2 \8 0 8 H h231
An-1,nv =0, ANN-1= —, ANN = (A.51)
SN SN+1
Ajj =0 otherwise. (A.52)
We can thustake At = A=1. Then, b and c in (A.18) are changed by
b — 0, (A.53)
c—¢C Y 0 0 (A.54)
hZ(Sl’ LN} ’ .

and K = —(1/h)(A~1H)T. We must also change the derivatives of 6 at j = 1, N to correspond with the boundary
conditions (95). In particular,

71

o
A0 = 71 Afgy =0. (A.55)

Making these changes, we see that

1
A"(Oy); = S—ZA,jsz,je” ZK., S, 0p)ATor ATt
J ] i=1

N
1 A ~ _
+ 5 D (KiC"(0:,6)) = Kiv1,;C"(6-1,6) A, 6]
J i=2

Kq; o
_ 2y 35"(9;) —C"(01,0,)6] ), AN = 0. (A.56)
h8§ o '

Then theiteration (A.42) and (A.43) with the relation (A.41) will solve Case 1.

A.4. Case Il numerics

The difference between Cases Il and |11 isin the condition at the left end. In Case 11 the left end is held fixed.
This means that the tension at the left end varies as a function of time, rather than being fixed, asin Case Il. Note
that the condition x” = y” = 0 is equivalent to the condition

A=A g =0. (A.57)
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Therefore, fo = /7 and g5 = g7. Andsince /3, = g}, = 0, weonly need to solve for f7, g for1 < j <N —1
andi = N + 1lasin Casell. We thus solve for .?,:l and g; asin Case Il, by making the following changein A, in
addition to those in Case 1:

A = (A.58)
The solution for f7, g are then given by
it =A"1(A%cos6;, AZcoshh, ..., A2cosdi)T, (A.59)
gl = AN (AZsing;, A2sings, ..., AZsing)T. (A.60)

The calculationin Case |11 then proceeds asin Case I1. With these changes, A" (6;,) isasin (A.56) witha — 0.
A.5. Case IV numerics

Case IV proceeds as in Case Il1, but with 5 = 67, and we only need to change the definition of the discrete
derivative A, 07, wherever it occurs.

A.6. Scaling—implementation of the scheme

In the actual computation, the length of the filament is scaled out. This is necessary in order to run arealistic
simulation, since L may be very large. For example, a 3m long rod with a 2cm typical radius, L = 300. Since
h must be on the order of 102 in order for the iteration to converge, we would have to take make the number of
spatial steps N = 30,000, far too large to run asimulation in alifetime. We thus scale the length of the filament as
follows:

s t
§s— —, r— —. (A.61)
L L
We can then take the discrete space step # = 1/N. The equations for the linear momenta (14) and (15) and (81)
and (82) remain unchanged, but the moment equations (16) and (83) are changed by

F,.G — L%(F,G) (A.62)

with the corresponding changes made in the discretized equations (see[44] for details on the changes to the scheme
with this scaling). With this scaling, we can take the number of space steps to be on the order of 102 in order to
obtain convergence, a number that allows for computation in a reasonable amount of time.
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